Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Nature ; 609(7928): 815-821, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2050415

RESUMEN

Lysosomal dysfunction has been increasingly linked to disease and normal ageing1,2. Lysosomal membrane permeabilization (LMP), a hallmark of lysosome-related diseases, can be triggered by diverse cellular stressors3. Given the damaging contents of lysosomes, LMP must be rapidly resolved, although the underlying mechanisms are poorly understood. Here, using an unbiased proteomic approach, we show that LMP stimulates a phosphoinositide-initiated membrane tethering and lipid transport (PITT) pathway for rapid lysosomal repair. Upon LMP, phosphatidylinositol-4 kinase type 2α (PI4K2A) accumulates rapidly on damaged lysosomes, generating high levels of the lipid messenger phosphatidylinositol-4-phosphate. Lysosomal phosphatidylinositol-4-phosphate in turn recruits multiple oxysterol-binding protein (OSBP)-related protein (ORP) family members, including ORP9, ORP10, ORP11 and OSBP, to orchestrate extensive new membrane contact sites between damaged lysosomes and the endoplasmic reticulum. The ORPs subsequently catalyse robust endoplasmic reticulum-to-lysosome transfer of phosphatidylserine and cholesterol to support rapid lysosomal repair. Finally, the lipid transfer protein ATG2 is also recruited to damaged lysosomes where its activity is potently stimulated by phosphatidylserine. Independent of macroautophagy, ATG2 mediates rapid membrane repair through direct lysosomal lipid transfer. Together, our findings identify that the PITT pathway maintains lysosomal membrane integrity, with important implications for numerous age-related diseases characterized by impaired lysosomal function.


Asunto(s)
Lisosomas , Fosfatidilinositoles , Transducción de Señal , Proteínas Relacionadas con la Autofagia/metabolismo , Transporte Biológico , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Espacio Intracelular/metabolismo , Lisosomas/metabolismo , Lisosomas/patología , Oxiesteroles/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo , Fosfatidilserinas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteómica , Receptores de Esteroides/metabolismo
2.
Clin Sci (Lond) ; 135(24): 2781-2791, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1599254

RESUMEN

Low plasma levels of the signaling lipid metabolite sphingosine 1-phosphate (S1P) are associated with disrupted endothelial cell (EC) barriers, lymphopenia and reduced responsivity to hypoxia. Total S1P levels were also reduced in 23 critically ill patients with coronavirus disease 2019 (COVID-19), and the two main S1P carriers, serum albumin (SA) and high-density lipoprotein (HDL) were dramatically low. Surprisingly, we observed a carrier-changing shift from SA to HDL, which probably prevented an even further drop in S1P levels. Furthermore, intracellular S1P levels in red blood cells (RBCs) were significantly increased in COVID-19 patients compared with healthy controls due to up-regulation of S1P producing sphingosine kinase 1 and down-regulation of S1P degrading lyase expression. Cell culture experiments supported increased sphingosine kinase activity and unchanged S1P release from RBC stores of COVID-19 patients. These observations suggest adaptive mechanisms for maintenance of the vasculature and immunity as well as prevention of tissue hypoxia in COVID-19 patients.


Asunto(s)
COVID-19/sangre , COVID-19/fisiopatología , Eritrocitos/metabolismo , Lisofosfolípidos/sangre , Esfingosina/análogos & derivados , Anciano , Células Cultivadas , Humanos , Lipoproteínas HDL/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , SARS-CoV-2 , Albúmina Sérica/metabolismo , Esfingosina/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA